
1. Introduction
Widespread increases in the burned area over the past half-century are evident across the western United States 
(US) despite decreases in the number of ignitions (Bowman et al., 2020; Keeley & Syphard, 2019). Several fac-
tors are suspected to have contributed to long-term increases in fire activity including the legacy of aggressive 
and successful fire suppression that has increased aboveground biomass (Rogers et al., 2020), increased human 
settlement in fire prone lands (Syphard et al., 2007), and climate change that increases fuel dryness and extends 
the fire season length (e.g., Abatzoglou & Williams, 2016). Extreme wildfires often occur during fire weather 
extremes (Stavros et al., 2014). This is particularly true in autumn in California and the Pacific Northwest US 
as a byproduct of chronically dry fuels prior to the onset of the rain season, which creates a flammable land-
scape, and strong offshore, downslope winds that drive rapid rates of fire spread (Nauslar et al., 2018; Williams 
et al., 2019). For example, the 2020 Labor Day fires in western Oregon spread rapidly under conditions of near 
record downslope winds and near record-breaking fire weather (Abatzoglou, Rupp, et al., 2021).

Studies have documented increases in autumn fire weather indices and the number of high fire danger days over 
the past four decades in California (e.g., Goss et al., 2020; Khorshidi et al., 2020). While such changes are con-
sistent with anthropogenic climate change (ACC), statistically rare wind-driven fire weather extremes that have 
been linked with recent catastrophic fires present a potentially more tenuous link to human-caused climate change 
given they are a function of both thermodynamic and dynamic elements (National Academy of Sciences, 2016). 

Abstract Extreme wind-driven autumn wildfires are hazardous to life and property, due to their rapid 
rate of spread. Recent catastrophic autumn wildfires in the western United States co-occurred with record- or 
near-record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry 
winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic 
influence on extreme autumn fire weather in 2017 and 2018. We show that while present-day anthropogenic 
climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased 
the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind-driven fires have 
occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity 
and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change 
is exacerbating autumn fire weather extremes that contribute to high-impact catastrophic fires in populated 
regions of the western US.

Plain Language Summary Over the last several years, California and western Oregon have seen 
their largest and most destructive wildfires on record. The rapid and extensive growth of many of these fires 
that invaded populated areas was driven by strong, dry, offshore, downslope autumn winds over fuels that had 
become exceedingly dry over the summer and remained dry into autumn. We used simulations of both the 
modern-era climate and a climate that could have been, absent human influence, to investigate the effect of 
anthropogenic climate change on the likelihood of extreme fire weather conditions (warm, very dry, and very 
windy) that were present during recent catastrophic wildfires. Despite a small decrease in the frequency of 
strong offshore winds, anthropogenic climate change has already increased the likelihood of extreme autumn 
fire weather across most of the west coast of the US through higher temperature and drier fuels, heightening the 
risk to life and property.
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Whereas the thermodynamics effects of ACC through fuel drying and increased vapor pressure deficit are more 
straightforward, the dynamic effects of ACC associated with winds are less clear (Williams et al., 2019). For 
example, studies on projected changes in offshore Santa Ana winds of southwestern California provide contra-
dictory results (Hughes et al., 2011; Jin et al., 2015; Miller & Schlegel, 2006; Yue et al., 2014), though recent 
studies indicate projected attenuation of Santa Ana winds in autumn (Guzman-Morales & Gershunov,  2019; 
Wang et al., 2020). However, the existing literature does not address the influence of ACC on autumn offshore 
winds elsewhere in California and western Oregon, nor the relative contribution of ACC via thermodynamic and 
dynamic effects on rare wind-driven fire weather extremes that may occur once every couple of decades.

The science of extreme event attribution has experienced major advances over the last decade and helps pro-
vide context for characterizing climate and weather extremes (Bellprat et al., 2019; National Academy of Sci-
ence, 2016; Uhe et al., 2021). It has, however, been used sparingly for wildfire although some studies exist for 
individual fire seasons (Kirchmeier-Young et al., 2019; van Oldenborgh et al., 2021) and individual fire events 
(Tan et al., 2018). While attribution of wildfire is confounded by multiple complementary factors associated with 
human influence, isolating the influence of ACC in top-down atmospheric factors that enable and drive extreme 
fires addresses a key aspect of fire risk. Here, we use this attribution framework to determine if, and by how 
much, ACC has altered the probability of the rare extreme wind-driven fire weather conditions during autumn, 
similar to conditions observed during several recent high-impact fires in California and Oregon. We specifically 
focus on offshore wind-driven autumn fire weather conditions from southwestern California to western Washing-
ton as such fires can comprise a majority of burned area in a given year (Kolden & Abatzoglou, 2018), are often 
co-located with human settlement (Jin et al., 2015), and have been associated with secondary impacts such as 
downstream air quality and de-energization of the electrical grid (Aguilera et al., 2021; Abatzoglou et al., 2020).

Here we examine how ACC altered the likelihood of extreme autumn fire weather experienced across the western 
US using large ensembles of regional climate model simulations. We further decompose the influence of ACC 
on the likelihood of the individual components contributing to fire weather indices. Additionally, we examine the 
role of offshore wind events and the influence of ACC on the frequency of such events.

2. Methods
2.1. Wind Driven Fires

We examine representative regions in the western US where recent large fires have occurred and were driven 
by strong offshore winds such as Santa Ana and Diablo winds of California (Jin et al., 2015; Keeley & Syp-
hard, 2019; Kolden & Abatzoglou, 2018; Mass & Ovens, 2019) and East winds of western Oregon (Abatzoglou, 
Rupp, et al., 2021). Within these regions, we focus on several recent large catastrophic offshore wind-driven 
autumn wildfires with widespread impacts on communities including the Wine Country Fires in October 2017, 
the Camp fire in November 2018, and North Complex Glass fires in September 2020 (all in Northern California), 
the Woolsey fire in November 2018 in Southern California, and the Lionshead fire in September 2020 in western 
Oregon. These fires provide archetypes of extreme offshore wind-driven autumn fires and guide an objective set 
of criteria for attribution analyses. To characterize the meteorological conditions associated with each fire relative 
to a long-term record (1979–2020), a suite of fire weather metrics were calculated using daily meteorological data 
from gridMET (Abatzoglou, 2013) at the centroid of each fire (Figure 1).

2.2. Climate Simulations

Climate simulations were generated through the volunteer computing platform Weather@home (Guilliod 
et al., 2017; Mote et al., 2016). Our configuration of Weather@home nests the Hadley Centre Regional Climate 
Model (HadRM3P) at 0.22° × 0.22° horizontal resolution in the Hadley Centre Atmospheric Model (HadAM3P) 
with updated global and regional model parameters (Hawkins et al., 2019; Li et al., 2019).

We used two large initial condition ensembles of simulations. The first represents modern-era climate condi-
tions (actualClim) that use observed concentrations of greenhouse gases, aerosols, and observed sea surface 
temperatures (SSTs; Donlon et al. [2012]) for September 2016 through December 2018. The second ensemble 
represents the climate that would have been without human influence (naturalClim) over the same time period 
using pre-industrial concentrations of greenhouse gases and aerosols and observed SST's with the anthropogenic 
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signal removed (Schaller et al., 2014; Uhe et al., 2016). Each large ensemble consists of 1000 simulations from 
September 2016 through December 2018, generated by perturbing the initial potential temperature field of each 
ensemble member. We excluded the first year as an additional model spin-up and use 2,000 realizations of au-
tumn weather (September through November (SON), 2017 and 2018) for analysis. Model outputs consisted of 
daily (precipitation) or instantaneous values (near-surface wind speed (WS), temperature (TA), relative humidity 
(RH)) at 21Z (1300 LST) corresponding to the approximate times used in the daily fire danger rating systems. 
Similar, smaller ensembles (402 actualClim and 1,008 naturalClim realizations) were generated with additional 
diagnostics to examine the prevalence of offshore downslope winds using 21Z wind velocity, temperature, geo-
potential height at various pressure levels. See Section S1 for additional detail.

2.3. Fire Weather Indices

We calculated three fire weather indices influenced by wind speed and associated with difficulty in fire contain-
ment and potential rates of spread given the nature of these wind-driven fires: (a) the fire weather index (FWI) 
from the Canadian Forest Fire Danger Rating system (Van Wagner, 1987), (b) the Hot-Dry-Windy (HDW) index 
(Srock et al., 2018), and (c) the Fosberg fire weather index (FFWI; Fosberg [1978]). Notably, FFWI and HDW 
do not consider fuel moisture or antecedent conditions. Furthermore, we considered two subcomponents of the 
FWI as diagnostics: the initial spread index (ISI) and the build-up index (BUI). The ISI weakly considers ante-
cedent information through fine fuel moisture content and is strongly influenced by wind speed while the BUI 
is a measure of the longer-term antecedent build-up of fuel drying that does account for the combined influence 
of temperature, humidity, and precipitation but excludes the influence of wind speed. Finally, we included vapor 

Figure 1. Recent significant offshore wind-driven wildfires in the western US. Inset map shows fire perimeters with gray illustrating elevation and black polygons 
showing the corresponding Predictive Service Areas. Ranked fire weather variables for each fire event are shown for the higher value on either the discovery date or day 
after, for the Fosberg Fire Weather Index (Fosberg), the Hot-Dry-Windy Index, the Initial Spread Index, and the Fire Weather Index. Variables are ranked from smallest 
to largest relative to local September-November maximum daily values during 1979–2020.
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pressure deficit (VPD) given that it has been shown to be the leading control of fire activity in California (Chen 
et al., 2021) and observed increases in VPD during autumn have increased the number of high fire potential days 
in California (Williams et al., 2019). We consider this suite of fire weather metrics given their different formula-
tions, sensitivities to meteorological inputs, and the role of antecedent conditions in the resultant metric.

2.4. Attribution

We estimated the change in the likelihood of extreme fire weather metrics attributable to ACC by comparing the 
frequency of occurrence of extremes between the actualClim and naturalClim ensembles. We specifically exam-
ined all extreme fire weather metrics and associated meteorological variables (temperature, relative humidity, 
windspeed, and VPD) corresponding to the day of the maximum FWI (FWImax) in SON of each simulation year. 
This harmonization allows us to focus on the most extreme autumn fire weather conditions each year as defined 
by the widely used FWI, rather than disparate days from different metrics which impedes inter-metric compari-
sons. We note that our general attribution conclusions were held when examining each metric independently by 
its maximum value each autumn.

Extreme fire weather conditions were defined as the gridcell 95th percentile of autumn maximum daily FWI 
in the naturalClim ensemble, that is, 1-in-20 years autumn event under pre-industrial climate conditions. This 
threshold was based on the magnitude of fire weather extremes coincident with the recent representative fires (see 
Section 3.1 below). Similarly, we defined gridcell extremes in other fire weather indices or meteorological varia-
bles using the same protocol. We defined the risk ratio as in the Pactual/Pnatural where Pactual and Pnatural are the proba-
bilities of the extreme event occurring in the actualClim ensemble and the naturalClim ensemble respectively 𝐴𝐴 𝐴 A 
risk ratio of two means that the 1-in-20 years event is two times as likely to occur in the actualClim ensemble than 
in the naturalClim ensemble. We estimated confidence intervals for the risk ratio by bootstrap using n = 10,000 
iterations and sampling ensemble members with replacement. Changes were considered statistically significantly 
where the 95% confidence interval excluded one. For regional analyses, we calculated the risk ratio for each grid 
cell then averaged over the four Predictive Service Area (PSA) boundaries—a management unit used by the US 
fire agencies—covering regions with recent large wind-driven fires (Figure 1).

2.5. Winds

We explicitly examined anthropogenic-forced changes in offshore downslope winds to accompany the fire weath-
er analyses. Due to increased complexity relative to the fire weather index analysis, we limited the spatial extent 
to regions with well-known offshore downslope winds focusing on East winds along the Oregon Cascades, Di-
ablo winds along the Sierras of Northern California, and Santa Ana winds in the Transverse Range of southern 
California.

We adapted the method of Abatzoglou, Hatchett, et  al.  (2021) to identify conditions suitable for offshore, 
downslope winds based on the cross-barrier 700-hPa horizontal wind speed u ≥ 13 m s−1 and the 700-hPa vertical 
wind speed ω ≥ 0.6 Pa s−1. We added the criterion that near-surface relative humidity ≤30% (e.g., Edinger, 1964; 
Smith et al., 2018) to constrain wind events to those that yield elevated fire weather potential (for more detail, see 
Section S2 in Supporting Information S1). We found that HadRM3p showed credible winds and downslope wind 
climatologies to those seen with ECMWF ReAnalysis 5 (ERA5; Hersbach et al. [2020]) including extremes sim-
ilar to those present in recent major wildfires (see Section S2–S3; Figures S1–S6 in Supporting Information S1). 
We calculated the change in SON frequency of offshore, downslope wind conditions between the naturalClim 
and actualClim ensembles for each region and investigated if an ACC signal could be detected on near-surface 
meteorological variables (VPD, RH, and WS), conditional on the presence of these conditions. Note that unlike 
our fire weather index analysis focused on very-rare extremes, the analyses of winds considered all offshore 
downslope winds that met the above criteria, rather than 1-in-20 years events.

3. Results
3.1. Extreme Fire Weather

Each of the six representative downslope wind-driven autumn fires occurred during fire weather extremes (Fig-
ure 1). All fire events had at least one fire weather index that ranked in the 95th percentile for autumn maximum 



Geophysical Research Letters

HAWKINS ET AL.

10.1029/2021GL095496

5 of 11

daily values between 1979 and 2020 (40th out of 42 years), including several that coincided with the most ex-
treme autumn fire weather metrics on record.

We found that ACC increased the frequency of autumn fire weather extremes across portions of the western US 
(Figure 2) relative to pre-industrial levels (Figure S7 in Supporting Information S1). Extreme FWImax were, on 
average, 40% more likely due to ACC across the western US (the regional mean of the grid cell risk ratios was 
1.40) with significant increases detected across 65% of the domain including along the west coast of Washington, 
Oregon, and northern California, although notably not in southern coastal California (Table S1 in Supporting 
Information S1). On days where the FWImax was above the 95th percentile, the regional average temperature was 
1.15°C warmer in the actualClim ensemble than in the naturalClim ensemble (Table S2 in Supporting Informa-
tion S1). Similarly, the relative humidity was 0.1% higher, the VPD was 1.52 hPa higher, and the wind speed was 
0.17 m/s lower in the actualClim ensemble, averaged over the domain.

Large increases in the frequency of extreme BUI and HDW were detected across the region (Figures 2c and 2d), 
whereas changes in the FFWI index were not significant (Figure 2e). Differences in the response of ACC across 
fire weather metrics are posited to be a consequence of the sensitivity of each metric to simulated changes in 
climate. For example, the HDW index is highly sensitive to VPD, which has increased in SON across the western 
US (Ficklin & Novick, 2017), and increased significantly on extreme FWImax days in actualClim simulations 
(Table S1; Figure S8 in Supporting Information S1). Similarly, increased temperature coincident with FWImax 
days in the actualClim simulations facilitates an increase in fire weather indices absent changes in wind speed 

Figure 2. Simulated risk ratio of extreme autumn fire weather metrics in modern-era simulations relative to preindustrial 
simulations. Hatching represents regions where changes were not statistically significant (i.e., the bootstrapped 95% 
confidence intervals do not exclude one). Predictive service area regions are outlined in black.
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itself. By contrast, the FFWI is most sensitive to wind speed and relative humidity, and only weakly sensitive to 
temperature. No significant decreases in any of the fire weather indices were detected within the domain.

The risk ratio of extreme fire weather varied among the four PSA regions (Figure 3). In the Central Western 
Oregon region, ACC increased the probability of extreme FWImax by 49% (risk ratio of 1.49). This increase was 
most strongly linked to increases in fuel dryness which manifest through the BUI, with smaller contributions from 
ISI. On days when FWImax occurs, the risk ratio of temperature and VPD were 1.72 and 1.61, respectively. The 
increase in VPD influenced the probability of extreme HDW, which increased by 73% despite a slight decrease 
in the likelihood of extreme wind speed.

Figure 3. Risk ratio of maximum autumn fire weather metrics above the naturalClim 95th percentile (1-in-20 years 
return interval) in modern-era climate simulations relative to preindustrial simulations for the Central Western Oregon (a), 
North Sierras (b), Mid Coast to Mendocino (c), and South Coast (d) predictive service area regions (depicted in Figure 1) 
with bootstrapped 95% confidence intervals. Right hand axes show the return period (years) in the actualClim ensemble 
corresponding to the naturalClim 1-in-20 years event. Horizontal dashed line represents no change in probability.
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In PSA regions in northern California, all fire weather metrics (excluding relative humidity) showed significant 
increases in the likelihood of extremes. In the northern Sierra region, the risk ratio of the HDW index was 2.06. 
This indicates that ACC has made extreme autumn HDW conditions twice as likely, that is, ACC has made a 
1-in-20 years HDW event a 1-in-10 years event. The increase in likelihood is primarily driven by an increase in 
aridity rather than a change in wind speed.

Along the southern California coast, we did not detect a significant increase in the frequency of FWI, ISI, or 
FFWI. This is primarily due to the slight decline in extreme wind speed during extreme fire weather days in this 
region. The South Coast PSA region did show an increase in aridity with risk ratios for extreme temperature and 
VPD of 1.82 and 1.80, respectively. The increase in aridity lead to detectable increases in the probability of ex-
treme BUI and HDW which had risk ratios of 1.48 and 1.75, respectively. Notably, the influence of BUI on FWI 
extremes in southern California was negligible given the region's exceptionally long dry season and formulation 
of the index which make changes in FWI extremes more sensitive to changes in ISI when the BUI is high.

3.2. Offshore Winds Analysis

Offshore, downslope wind frequency decreased from the naturalClim to the actualClim scenario in all regions 
(Figure 4b; Table S3 in Supporting Information S1), though the only statistically robust decrease was seen in 
Santa Ana wind frequency (region CAd). These results suggest that ACC may already be reducing Santa Ana 
frequency, consistent with projected changes under global warming through the 21st century (Guzman-Morales 
& Gershunov, 2019; Wang et al., 2020). Similarly, extreme offshore downslope wind frequency decreased in all 
regions (Table S3 in Supporting Information S1). The consistency in the sign of the changes across all regions 
also suggests that an anthropogenically forced decrease in the prevalence of such offshore downslope winds is a 
general consequence of ACC across western US mountain ranges and not limited to Santa Ana winds of southern 
California.

When offshore, downslope conditions did occur, VPD was 5%–9% higher in the actualClim scenario across 
the six regions (Figure 4c), driven primarily by a 0.8–1.4°C warming (Table S4 in Supporting Information S1). 
Non-significant decreases in relative humidity were found in all regions (Figure 4c). Similarly, during extreme 
offshore downslope wind conditions temperatures were 0.7–2.4°C warmer in the actualClim scenario (Table S5 
in Supporting Information S1). Finally, we found no regionally consistent nor statistically significant changes in 
near-surface wind speed accompanying downslope wind days (Figure 4c).

4. Discussion and Conclusions
Our regional modeling experiment demonstrates that human-caused climate change has already substantially 
increased the likelihood of extreme fire weather metrics that have been linked with recent catastrophic wind-driv-
en autumn fires from California to Oregon. Across several regions that have experienced high-impact autumn 
wind-driven fires, we estimate that anthropogenic climate change increased the likelihood of fire weather ex-
tremes viewed through metrics like FWI and HDW by at least 50% (Figure 3). Likewise, while the direction of 
trends in fire weather indices concurs with previous studies (e.g., Goss et al., 2020; McEvoy et al., 2020), our 
findings are unique given that we isolate the anthropogenic influences for extreme fire weather conditions across 
a host of fire weather indices. By contrast, decreased frequency in autumn dry, offshore, downslope fire-spread-
ing winds appears to be an emergent anthropogenic signal along the western US from southern California to 
northwest Oregon, expanding on the findings of Guzman-Morales and Gershunov (2019) for southern California. 
The increased likelihood of autumn fire weather extremes with anthropogenic climate change appears to be pri-
marily driven by thermodynamic responses that facilitate increased fuel aridity and increased VPD and temper-
ature during fire weather extremes.

Studies have shown potential links between interannual-to-multidecadal climate variability and the frequency of 
offshore winds in southern California (e.g., Rolinski et al., 2019). However, the specific influence of longer-lived 
climate modes on recent autumn wind-driven fire extremes examined herein remains unclear. While our ensem-
bles of simulations were limited to pooling SST conditions in 2017 and 2018, we found statistically similar risk 
ratios when investigating 2017 and 2018 separately (Table S6 in Supporting Information S1). This suggests that 
the anthropogenic signal was a robust driver across the years. Although beyond the scope of this study, how the 
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interannual-to-multidecadal climate variability regulates the response of extreme wind-driven autumn wildfire 
weather to ACC merits further research.

Attribution science has rarely been applied to wildfire events given the complex interactions among ignitions, 
land management, and weather conditions. While we stop short of attributing fire behavior characteristics (e.g., 
fire spread rate, totally burned area) to anthropogenic climate change, the distillation of changing likelihoods of 
extreme fire weather aid in overall risk modeling efforts. We note that our findings are specific to the geography, 
season, and wind-driven fire archetype, and cannot be compared directly to the attribution of extreme summer fire 
seasons in previous studies (Kirchmeier-Young et al., 2019; Lewis et al., 2020). Observed and projected delayed 
onset of autumn precipitation in California hasten the potential for compound fuel aridity-offshore wind extremes 
that yield fire weather extremes (Luković et al., 2021; Swain et al., 2018; Swain, 2021). We examined the anthro-
pogenic influence on the timing and magnitude of autumn rains but results were inconclusive, compelling further 
investigation into the interactions between thermodynamic and dynamic drivers of anthropogenic-driven changes 
in fire weather conditions.

This study demonstrates that anthropogenic climate change has already increased the likelihood of autumn 
wind-driven extreme fire weather conditions in the western US. In concert with non-climatic factors such as 

Figure 4. Anthropogenic influence on characteristics of autumn (September through November) downslope wind events at 21Z by region. (a) Simulated ensemble 
mean frequency of downslope wind events under modern era forcing (circa 2018); (b) change in frequency of events from preindustrial to modern era forcing; (c) 
relative change from preindustrial to modern era forcing in 2-m vapor pressure deficit (VPD), 2-m relative humidity (RH), and 10-m wind speed (Wind) during 
downslope wind events; (d) surface elevation map of the west coast US showing the regions analyzed. The highlighted 4 × 4 grids show the cells used to identify cross-
barrier and downward winds at 700 hPa. The black and white circles mark the locations where 10-m winds (black) and 2-m VPD and RH (white) were extracted.
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biomass accumulation and encroachment of settlement in fire-prone lands, this has increased overall fire risk 
motivating the adoption of fire-adaptation systems that may ameliorate fire potential and are ecologically appro-
priate for the landscape (e.g., Kolden & Henson, 2019; Moritz et al., 2014). Finally, the approaches used here can 
guide near-term fire risk assessments toward directing appropriate adaptation efforts, and better elucidate how 
different fire typologies are directly influenced by anthropogenic climate change.

Data Availability Statement
Postprocessed model simulations and code used in this study are achieved at:https://doi.org/10.5281/zeno-
do.5600650. Publicly available datasets used in this study were acquired from the following repositories: ERA5: 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview; gridMET: http://
thredds.northwestknowledge.net:8080/thredds/reacch_climate_MET_catalog.html.

References
Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. International Journal 

of Climatology, 33(1), 121–131. https://doi.org/10.1002/joc.3413
Abatzoglou, J. T., Hatchett, B. J., Fox-Hughes, P., Gershunov, A., & Nauslar, N. J. (2021). Global climatology of synoptically-forced downslope 

winds. International Journal of Climatology, 41(1), 31–50. https://doi.org/10.1002/joc.6607
Abatzoglou, J. T., Rupp, D. E., O’Neill, L. W., & Sadegh, M. (2021). Compound extremes drive the western Oregon wildfires of September 2020. 

Geophysical Research Letters, 48(8), e2021GL092520. https://doi.org/10.1029/2021GL092520
Abatzoglou, J. T., Smith, C. M., Swain, D. L., Ptak, T., & Kolden, C. A. (2020). Population exposure to pre-emptive de-energization aimed at 

averting wildfires in Northern California. Environmental Research Letters, 15(9), 94046. https://doi.org/10.1088/1748-9326/aba135
Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the 

National Academy of Sciences, 113(42), 11770–11775. https://doi.org/10.1073/pnas.1607171113
Aguilera, R., Corringham, T., Gershunov, A., & Benmarhnia, T. (2021). Wildfire smoke impacts respiratory health more than fine parti-

cles from other sources: Observational evidence from southern California. Nature Communications, 12(1), 1–8. https://doi.org/10.1038/
s41467-021-21708-0

Bellprat, O., Guemas, V., Doblas-Reyes, F., & Donat, M. G. (2019). Toward reliable extreme weather and climate event attribution. Nature Com-
munications, 10(1), 1732. https://doi.org/10.1038/s41467-019-09729-2

Bowman, D. M., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, G. R., & Flannigan, M. (2020). Vegetation fires in the Anthro-
pocene. Nature Reviews Earth & Environment, 1(10), 500–515. https://doi.org/10.1038/s43017-020-0085-3

Chen, B., Jin, Y., Scaduto, E., Moritz, M. A., Goulden, M. L., & Randerson, J. T. (2021). Climate, fuel, and land use shaped the spatial pat-
tern of wildfire in California’s Sierra Nevada. Journal of Geophysical Research: Biogeosciences, 126(2), e2020JG005786. https://doi.
org/10.1029/2020JG005786

Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., & Wimmer, W. (2012). The operational sea surface temperature and sea ice 
analysis (OSTIA) system. Remote Sensing of Environment, 116, 140–158. https://doi.org/10.1016/j.rse.2010.10.017

Edinger, J. G. (1964). Surface wind Patterns in the Los Angeles basin during “Santa Ana” conditions (pp. 100). University of California.
Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United 

States atmosphere. Journal of Geophysical Research: Atmospheres, 122(4), 2061–2079. https://doi.org/10.1002/2016JD025855
Fosberg, M. A. (1978). Weather in wildland fire management: The fire weather index. In Proceedings of the Conference on Sierra Nevada 

Meteorology.
Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A., Williams, A. P., et al. (2020). Climate change is increasing the likelihood 

of extreme autumn wildfire conditions across California. Environmental Research Letters, 15(9), 094016. https://doi.org/10.1088/1748-9326/
ab83a7

Guillod, B. P., Jones, R. G., Bowery, A., Haustein, K., Massey, N. R., Mitchell, D. M., et al. (2017). Weather@home 2: Validation of an improved 
global–regional climate modelling system. Geoscientific Model Development, 10(5), 1849–1872. https://doi.org/10.5194/gmd-10-1849-2017

Guzman-Morales, J., & Gershunov, A. (2019). Climate change suppresses Santa Ana winds of southern California and sharpens their seasonality. 
Geophysical Research Letters, 46(5), 2772–2780. https://doi.org/10.1029/2018GL080261

Hawkins, L. R., Rupp, D. E., McNeall, D. J., Li, S., Betts, R. A., Mote, P. W., et al. (2019). Parametric sensitivity of vegetation dynamics in the 
TRIFFID model and the associated uncertainty in projected climate change impacts on western U.S. Forests. Journal of Advances in Modeling 
Earth Systems, 11(8), 2787–2813. https://doi.org/10.1029/2018MS001577

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal 
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hughes, M., Hall, A., & Kim, J. (2011). Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic 
Change, 109(1), 119–132. https://doi.org/10.1007/s10584-011-0300-9

Jin, Y., Goulden, M. L., Faivre, N., Veraverbeke, S., Sun, F., Hall, A., et  al. (2015). Identification of two distinct fire regimes in South-
ern California: Implications for economic impact and future change. Environmental Research Letters, 10(9), 094005. https://doi.
org/10.1088/1748-9326/10/9/094005

Keeley, J. E., & Syphard, A. D. (2019). Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires. Fire Ecology, 
15(1), 24. https://doi.org/10.1186/s42408-019-0041-0

Khorshidi, M. S., Dennison, P. E., Nikoo, M. R., AghaKouchak, A., Luce, C. H., & Sadegh, M. (2020). Increasing concurrence of wildfire drivers 
tripled megafire critical danger days in Southern California between 1982 and 2018. Environmental Research Letters, 15(10), 104002.

Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J., & Anslow, F. S. (2019). Attribution of the influence of human-induced 
climate change on an extreme fire season. Earth's Future, 7(1), 2–10. https://doi.org/10.1029/2018EF001050

Kolden, C. A., & Abatzoglou, J. T. (2018). Spatial distribution of wildfires ignited under katabatic versus non-katabatic winds in Mediterranean 
Southern California USA. Fire, 1(2), 19. https://doi.org/10.3390/fire1020019

Acknowledgments
The authors thank David Wallom and 
Sarah Sparrow for providing support 
for Weather@home. We would also like 
to thank the Met Office Hadley Centre 
PRECIS team for their technical and 
scientific support for the development 
and application of Weather@Home. 
Finally, we would like to thank all of 
the volunteers who have donated their 
computing time to climateprediction.
net and Weather@home. This work 
was supported by the National Oceanic 
and Atmospheric Administration's 
(NOAA) Regional Integrated Sciences 
and Assessments Program (RISA) under 
NOAA grants NA15OAR4310145 and 
NA15OAR4310145a. JTA was supported 
by NSF award OAI-2019762.

https://doi.org/10.5281/zenodo.5600650
https://doi.org/10.5281/zenodo.5600650
https://cds.climate.copernicus.eu/cdsapp
http://thredds.northwestknowledge.net:8080/thredds/reacch_climate_MET_catalog.html
http://thredds.northwestknowledge.net:8080/thredds/reacch_climate_MET_catalog.html
https://doi.org/10.1002/joc.3413
https://doi.org/10.1002/joc.6607
https://doi.org/10.1029/2021GL092520
https://doi.org/10.1088/1748-9326/aba135
https://doi.org/10.1073/pnas.1607171113
https://doi.org/10.1038/s41467-021-21708-0
https://doi.org/10.1038/s41467-021-21708-0
https://doi.org/10.1038/s41467-019-09729-2
https://doi.org/10.1038/s43017-020-0085-3
https://doi.org/10.1029/2020JG005786
https://doi.org/10.1029/2020JG005786
https://doi.org/10.1016/j.rse.2010.10.017
https://doi.org/10.1002/2016JD025855
https://doi.org/10.1088/1748-9326/ab83a7
https://doi.org/10.1088/1748-9326/ab83a7
https://doi.org/10.5194/gmd-10-1849-2017
https://doi.org/10.1029/2018GL080261
https://doi.org/10.1029/2018MS001577
https://doi.org/10.1002/qj.3803
https://doi.org/10.1007/s10584-011-0300-9
https://doi.org/10.1088/1748-9326/10/9/094005
https://doi.org/10.1088/1748-9326/10/9/094005
https://doi.org/10.1186/s42408-019-0041-0
https://doi.org/10.1029/2018EF001050
https://doi.org/10.3390/fire1020019


Geophysical Research Letters

HAWKINS ET AL.

10.1029/2021GL095496

10 of 11

Kolden, C. A., & Henson, C. (2019). A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: A case 
study from the 2017 Thomas fire. Fire, 2(1), 9. https://doi.org/10.3390/fire2010009

Lewis, S. C., Blake, S. A., Trewin, B., Black, M. T., Dowdy, A. J., Perkins-Kirkpatrick, S. E., et al. (2020). Deconstructing factors contributing 
to the 2018 fire weather in Queensland, Australia. [in “Explaining extremes of 2018 from a climate perspective”]. Bulletin of American Mete-
orological Society, 101, S115–S121. https://doi.org/10.1175/BAMS-D-19-0144.1

Li, S., Rupp, D. E., Hawkins, L., Mote, P. W., McNeall, D., Sparrow, S. N., et al. (2019). Reducing climate model biases by exploring parameter 
space with large ensembles of climate model simulations and statistical emulation. Geoscientific Model Development, 12(7), 3017–3043.

Luković, J., Chiang, J. C. H., Blagojević, D., & Sekulić, A. (2021). A later onset of the rainy season in California. Geophysical Research Letters, 
48(4), e2020GL090350. https://doi.org/10.1029/2020GL090350

Mass, C. F., & Ovens, D. (2019). The northern California wildfires of 8–9 October 2017: The role of a major downslope wind event. Bulletin of 
the American Meteorological Society, 100(2), 235–256. https://doi.org/10.1175/BAMS-D-18-0037.1

McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R., & Abatzoglou, J. T. (2020). Projected changes in reference evapotranspira-
tion in California and Nevada: Implications for drought and wildland fire danger. Earth's Future, 8(11), e2020EF001736. https://doi.
org/10.1029/2020EF001736

Miller, N. L., & Schlegel, N. J. (2006). Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophysical 
Research Letters, 33(15), L15711. https://doi.org/10.1029/2006GL025808

Moritz, M. A., Batllori, E., Bradstock, R. A., Gill, A. M., Handmer, J., Hessburg, P. F., et al. (2014). Learning to coexist with wildfire. Nature, 
515(7525), 58–66. https://doi.org/10.1038/nature13946

Mote, P. W., Allen, M. R., Jones, R. G., Li, S., Mera, R., Rupp, D. E., et al. (2016). Superensemble regional climate modeling for the western 
United States. Bulletin of the American Meteorological Society, 97(2), 203–215. https://doi.org/10.1175/BAMS-D-14-00090.1

National Academies of Sciences, E. (2016). Attribution of extreme weather events in the context of climate change. https://doi.org/10.17226/21852
Nauslar, N. J., Abatzoglou, J. T., & Marsh, P. T. (2018). The 2017 North Bay and southern California fires: A case study. Fire, 1(1), 18. https://

doi.org/10.3390/fire1010018
Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R., & Turetsky, M. (2020). Focus on changing fire regimes: Interactions with climate, 

ecosystems, and society. Environmental Research Letters, 15(3), 030201. https://doi.org/10.1088/1748-9326/ab6d3a
Rolinski, T., Capps, S. B., & Zhuang, W. (2019). Santa Ana winds: A descriptive climatology. Weather and Forecasting, 34(2), 257–275. https://

doi.org/10.1175/WAF-D-18-0160.1
Schaller, N., Otto, F. E. L., van Oldenborgh, G. J., Massey, N. R., Sparrow, S., & Allen, M. R. (2014). The heavy precipitation event of May-June 

2013 in the Upper Danube and Elbe Basins. [in “Explaining extremes of 2013 from a climate perspective”]. Bulletin of the American Meteor-
ological Society, 95(9), S69–S72.

Smith, C., Hatchett, B. J., & Kaplan, M. (2018). A surface observation based climatology of Diablo-Like winds in California’s wine country and 
western Sierra Nevada. Fire, 1(2), 25. https://doi.org/10.3390/fire1020025

Srock, A. F., Charney, J. J., Potter, B. E., & Goodrick, S. L. (2018). The hot-dry-windy index: A new fire weather index. Atmosphere, 9(7), 279. 
https://doi.org/10.3390/atmos9070279

Stavros, E. N., Abatzoglou, J., Larkin, N. K., McKenzie, D., & Steel, E. A. (2014). Climate and very large wildland fires in the contiguous western 
USA. International Journal of Wildland Fire, 23(7), 899–914. https://doi.org/10.1071/WF13169

Swain, D. L. (2021). A shorter, sharper rainy season amplifies California wildfire risk. Geophysical Research Letters, 48(5), e2021GL092843. 
https://doi.org/10.1029/2021GL092843

Swain, D. L., Langenbrunner, B., Neelin, J. D., & Hall, A. (2018). Increasing precipitation volatility in twenty-first-century California. Nature 
Climate Change, 8, 427. https://doi.org/10.1038/s41558-018-0140-y

Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Human influence on 
California fire regimes. Ecological Applications, 17(5), 1388–1402.

Tan, X., Chen, S., & Gan, T. Y. (2018). Multi-model extreme event attribution of the weather conducive to the 2016 Fort McMurray wildfire. 
Agricultural and Forest Meteorology, 260(261), 109–117. https://doi.org/10.1016/j.agrformet.2018.06.010

Uhe, P., Mitchell, D., Bates, P. D., Allen, M. R., Betts, R. A., Huntingford, C., et al. (2021). Method uncertainty Is essential for reliable confidence 
statements of precipitation projections. Journal of Climate, 34(3), 1227–1240. https://doi.org/10.1175/JCLI-D-20-0289.1

Uhe, P., Otto, F. E. L., Haustein, K., Oldenborgh, G. J. van, King, A. D., Wallom, D. C. H., et al. (2016). Comparison of methods: Attrib-
uting the 2014 record European temperatures to human influences. Geophysical Research Letters, 43(16), 8685–8693. https://doi.
org/10.1002/2016GL069568

van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R., et al. (2021). Attribution of the Australian bushfire risk 
to anthropogenic climate change. Natural Hazards and Earth System Sciences, 21(3), 941–960. https://doi.org/10.5194/nhess-21-941-2021

Van Wagner (1987). Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Headquarters, 
Ottawa. Forestry Technical Report, 35, 35. Retrieved from https://cfs.nrcan.gc.ca/publications?id=19927

Wang, M., Ullrich, P., & Millstein, D. (2020). Future projections of wind patterns in California with the variable-resolution CESM: A clustering 
analysis approach. Climate Dynamics, 54(3), 2511–2531. https://doi.org/10.1007/s00382-020-05125-5

Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. K., et al. (2019). Observed impacts of anthropo-
genic climate change on wildfire in California. Earth's Future, 7(8), 892–910. https://doi.org/10.1029/2019EF001210

Yue, X., Mickley, L. J., & Logan, J. A. (2014). Projection of wildfire activity in southern California in the mid-twenty-first century. Climate 
Dynamics, 43(7), 1973–1991. https://doi.org/10.1007/s00382-013-2022-3

References From the Supporting Information
Essery, R., Best, M., & Cox, P. (2001). MOSES 2.2 technical documentation. Met Office, Hadley Centre Tech. Note 30, 30.
Massey, N., Jones, R., Otto, F. E. L., Aina, T., Wilson, S., Murphy, J. M., et  al. (2015). weather@home—development and validation of a 

very large ensemble modelling system for probabilistic event attribution. Quarterly Journal of the Royal Meteorological Society, 141(690), 
1528–1545. https://doi.org/10.1002/qj.2455

Mera, R., Massey, N., Rupp, D. E., Mote, P., Allen, M., & Frumhoff, P. C. (2015). Climate change, climate justice and the application of proba-
bilistic event attribution to summer heat extremes in the California Central Valley. Climatic Change, 133(3), 427–438. https://doi.org/10.1007/
s10584-015-1474-3

https://doi.org/10.3390/fire2010009
https://doi.org/10.1175/BAMS-D-19-0144.1
https://doi.org/10.1029/2020GL090350
https://doi.org/10.1175/BAMS-D-18-0037.1
https://doi.org/10.1029/2020EF001736
https://doi.org/10.1029/2020EF001736
https://doi.org/10.1029/2006GL025808
https://doi.org/10.1038/nature13946
https://doi.org/10.1175/BAMS-D-14-00090.1
https://doi.org/10.17226/21852
https://doi.org/10.3390/fire1010018
https://doi.org/10.3390/fire1010018
https://doi.org/10.1088/1748-9326/ab6d3a
https://doi.org/10.1175/WAF-D-18-0160.1
https://doi.org/10.1175/WAF-D-18-0160.1
https://doi.org/10.3390/fire1020025
https://doi.org/10.3390/atmos9070279
https://doi.org/10.1071/WF13169
https://doi.org/10.1029/2021GL092843
https://doi.org/10.1038/s41558-018-0140-y
https://doi.org/10.1016/j.agrformet.2018.06.010
https://doi.org/10.1175/JCLI-D-20-0289.1
https://doi.org/10.1002/2016GL069568
https://doi.org/10.1002/2016GL069568
https://doi.org/10.5194/nhess-21-941-2021
https://cfs.nrcan.gc.ca/publications?id=19927
https://doi.org/10.1007/s00382-020-05125-5
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1007/s00382-013-2022-3
https://doi.org/10.1002/qj.2455
https://doi.org/10.1007/s10584-015-1474-3
https://doi.org/10.1007/s10584-015-1474-3


Geophysical Research Letters

HAWKINS ET AL.

10.1029/2021GL095496

11 of 11

Oldenborgh, G. J., van Wiel, K., van der Sebastian, A., Singh, R., Arrighi, J., Otto, F., et al. (2017). Attribution of extreme rainfall from Hurricane 
Harvey, Environmental Research Letters 12.124009.

Sippel, S., Otto, F. E. L., Flach, M., & van Oldenborgh, G. J. (2016). The role of anthropogenic warming in 2015 central European heat waves. 
Bulletin of the American Meteorological Society, 97, 51–56.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological 
Society, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

https://doi.org/10.1175/BAMS-D-11-00094.1

	Anthropogenic Influence on Recent Severe Autumn Fire Weather in the West Coast of the United States
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methods
	2.1. Wind Driven Fires
	2.2. Climate Simulations
	2.3. Fire Weather Indices
	2.4. Attribution
	2.5. Winds

	3. Results
	3.1. Extreme Fire Weather
	3.2. Offshore Winds Analysis

	4. Discussion and Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


